CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email mathias.maierhofer@icd.uni-stuttgart.de
full text file.pdf (3,144,916 bytes)
references Content-type: text/plain
last changed 2019/12/18 08:03
pick and add to favorite papersHOMELOGIN (you are user _anon_140359 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002