CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 258

_id caadria2010_026
id caadria2010_026
authors Kann, Jeff W. T. and John S. Gero
year 2010
title Studying designers’ behaviour in collaborative virtual workspaces using quantitative methods
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 273-282
summary This paper presents a case study comparing the behaviour of designers in a collaborative 3D virtual environment with those in a face-to-face environment using quantitative tools to examine their design protocols. It starts with depicting a design ontology along with two methods of analysis for this investigation. The results in this case show that the 3D environment increases the designer’s Structure activities. The rate of meaningful design communication is slower than the base-line face-to-face session. This communication reflects the rate of design cognition when the design process is “close coupled”. Reviewing the design protocol suggests that the 3D design session composed of both “loosely coupled” and “close coupled” periods. This is consistent with other studies that 3D collaborative tools may encourage “loosely coupled” design process.
keywords Design behaviour; virtual workspaces; protocol analysis; quantitative methods; design ontology
series CAADRIA
email kan.jeff@gmail.com
last changed 2012/05/30 19:29

_id acadia10_379
id acadia10_379
authors Geiger, Jordan; San Fratello, Virginia
year 2010
title Hyperculture: Earth as Interface
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 379-384
summary Digital Fabrication and Hybrid Interface: Lessons in Agriculture :abstract Two vitally important fields of work in architecture and computing—in digital fabrication methods and in the development of interfaces between digital and analog systems—can find new forms in their combination with one another. Moreover, a recent such experiment in the production of landscape rather than building not only suggests a number of implications for architectural work, but of ecological, economic and urban structures that underlie the projects’s visible formal and aesthetic orders. This project, “Hyperculture: Earth as Interface,” studied the potential outcomes of modifying a commonly employed information infrastructure for the optimization of agricultural production throughout most of America’s heartland; and that same infrastructure’s latent flexibility to operate in both “read” and “write” modes, as a means for collaborative input and diversified, shared output. In the context of industrialized agriculture, this work not only negotiates seemingly contradictory demands with diametrically opposed ecological and social outcomes; but also shows the fabrication of landscape as suggestive of other, more architectural applications in the built environment. The Hyperculture project is sited within several contexts: industrial, geographically local, ecological, and within the digital protocols of landscape processing known as “precision agriculture.” Today, these typically work together toward the surprising result of unvariegated repetition, known commonly as monoculture. After decades of monoculture’s proliferation, its numerous inefficiencies have come under broad recent scrutiny, leading to diverse thinking on ways to redress seemingly conflicting demands such as industry’s reliance on mass-production and automation; the demand for variety or customization in consumer markets; and even regulatory inquiries into the ecological and zoning harms brought by undiversified land use. Monoculture, in short, is proving unsustainable from economic, environmental, and even aesthetic and zoning standpoints. But its handling in digital interfaces, remote sensing and algorithmically directed fabrication is not.
keywords GPS, precision agriculture, digital landscape fabrication, interface, analog/digital systems, open source platform, digital fabrication, multi-dimensional scales
series ACADIA
type normal paper
email jordang@buffalo.edu
last changed 2010/11/10 06:27

_id acadia10_139
id acadia10_139
authors Miller, Nathan
year 2010
title [make]SHIFT: Information Exchange and Collaborative Design Workflows
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 139-144
summary This paper explores design processes requiring the invention and implementation of customized workflows for the optimization of design information exchange. Standard workflows in design software are typically dependent upon the use of proprietary file formats to communicate design intent across the design team. Software platforms promote “one-stop-shop” proprietary approaches to BIM where all team members and consultants ideally operate within a single model environment and store information within a single file format. While the ‘single model’ approach can be effective under some circumstances, this approach is often found to be limiting when the design process calls for the integration of other design toolsets and delivery processes. This is especially true for large complex projects where multiple participants with different software requirements need to collaborate on the same design. In these cases, various non-standard ways of working are often implemented, resulting in a new means of communicating design and building information across a team. This paper will outline the impact customized workflows have on the design process at NBBJ and evaluate their potential for leading to more innovative design and integrated teams. The first study will explore and evaluate the communication and collaborative process that took place in the design development and construction documentation stages of the Hangzhou Stadium. The second study will be an overview of ongoing investigation and experimentation into customized workflows for team and data integration.
keywords team integration, international practice, parametric methods
series ACADIA
type normal paper
email nmiller@nbbj.com
last changed 2010/11/10 06:27

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email hshewardga3@gatech.edu
last changed 2012/02/11 18:21

_id cf2011_p157
id cf2011_p157
authors Boton, Conrad; Kubicki Sylvain, Halin Gilles
year 2011
title Understanding Pre-Construction Simulation Activities to Adapt Visualization in 4D CAD Collaborative Tools
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 477-492.
summary Increasing productivity and efficiency is an important issue in the AEC field. This area is mainly characterized by fragmentation, heterogeneous teams with low lifetimes and many uncertainties. 4D CAD is one of the greatest innovations in recent years. It consists in linking a 3D model of the building with the works planning in order to simulate the construction evolution over time. 4D CAD can fill several needs from design to project management through constructivity analysis and tasks planning (Tommelein 2003). The literature shows that several applications have been proposed to improve the 4D CAD use (Chau et al. 2004; Lu et al. 2007; Seok & al. 2009). In addition, studies have shown the real impact of 4D CAD use in construction projects (Staub-French & Khanzode 2007; Dawood & Sika 2007). More recently, Mahalingam et al. (2010) showed that the collaborative use of 4D CAD is particularly useful during the pre-construction phase for comparing the constructability of working methods, for visually identifying conflicts and clashes (overlaps), and as visual tool for practitioners to discuss and to plan project progress. So the advantage of the 4D CAD collaborative use is demonstrated. Moreover, several studies have been conducted both in the scientific community and in the industrial world to improve it (Zhou et al. 2009; Kang et al. 2007). But an important need that remains in collaborative 4D CAD use in construction projects is about the adaptation of visualization to the users business needs. Indeed, construction projects have very specific characteristics (fragmentation, variable team, different roles from one project to another). Moreover, in the AEC field several visualization techniques can represent the same concept and actors choose one or another of these techniques according to their specific needs related to the task they have to perform. For example, the tasks planning may be represented by a Gantt chart or by a PERT network and the building elements can be depicted with a 3D model or a 2D plan. The classical view (3D + Gantt) proposed to all practitioners in the available 4D tools seems therefore not suiting the needs of all. So, our research is based on the hypothesis that adapting the visualization to individual business needs could significantly improve the collaboration. This work relies on previous ones and aim to develop a method 1) to choose the best suited views for performed tasks and 2) to compose adapted multiple views for each actor, that we call “business views”. We propose a 4 steps-method to compose business views. The first step identifies the users’ business needs, defining the individual practices performed by each actor, identifying his business tasks and his information needs. The second step identifies the visualization needs related to the identified business needs. For this purpose, the user’s interactions and visualization tasks are described. This enables choosing the most appropriate visualization techniques for each need (step 3). At this step, it is important to describe the visualization techniques and to be able to compare them. Therefore, we proposed a business view metamodel. The final step (step 4) selects the adapted views, defines the coordination mechanisms and the interaction principles in order to compose coordinated visualizations. A final step consists in a validation work to ensure that the composed views really match to the described business needs. This paper presents the latest version of the method and especially presents our latest works about its first and second steps. These include making more generic the business tasks description in order to be applicable within most of construction projects and enabling to make correspondence with visualization tasks.
keywords Pre-construction, Simulation, 4D CAD, Collaboration, Computer Supported Cooperative Work, Human-Computer Interface, Information visualization, Business view, Model driven engineering
series CAAD Futures
email conrad.boton@tudor.lu
last changed 2012/02/11 18:21

_id acadia10_372
id acadia10_372
authors Dierichs, Karola; Menges, Achim
year 2010
title Material Computation in Architectural Aggregate Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 372-378
summary Aggregates are defined as large amounts of elements being in loose contact. In architecture they are mainly known as an additive in concrete construction. Relatively few examples use aggregates in their unbound form as an architectural material system in their own right. The investigation of potential architectural applications however is both a very relevant and unexplored branch of design research. Loose granular systems are inherently different from other architectural construction systems. One of the most decisive distinctions lies in the way information on those granular architectural systems is being generated, processed, and integrated into the design process. Several mathematical methods have been developed to numerically model granular behaviour. However, the need and also the potential of using so-called ,material’ computation is specifically relevant with aggregates, as much of their behaviour is still not being described in these mathematical models. This paper will present the current outcome of a doctorate research on aggregate architectures with a focus on information processing in machine and material computation. In the first part, it will introduce definitions of material and machine computation. In the second part, the way machine computation is employed in modelling granulates will be introduced. The third part will review material computation in granular systems. In the last part, a concrete example of an architectural aggregate model will be explained with regard to the given definition of material computation. Conclusively a comparative overview between material and machine computation in aggregate architectures will be given and further areas of development will be outlined.
series ACADIA
type normal paper
email achim.menges@icd.uni-stuttgart.de
last changed 2010/11/10 06:27

_id ecaade2010_074
id ecaade2010_074
authors Droste, Stephan
year 2010
title Extreme Designing: Proposal for the transfer of concepts from the agile development to the architectural design process
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.661-666
wos WOS:000340629400071
summary Obviously, design collaboration, the design process, and its methods are strongly interdependent. In order do understand collaborative processes and their requirements, methods of design process are focused prelimarly. After the hype during the last decades collaborative design seems to remain in a selfcentred discourse with little concrete application outside the academic world, while in the same time collaboration is omnipresent in conventional architectural design. Interestingly, the initiation of the so called agile methods in software design were initiated by new tools and paradigms in software design and on the other hand defective conditions in the collaborative process, corresponding widely to the challenges of the architectural design process. This paper opposes principles of software development to the architect’s approach to (early) design. Subsequently some implications for the extension of (collaborative) design tools are suggested.
keywords Design process; Collaborative design; Design methods; Agile processes; Software development
series eCAADe
email stephan@casino.uni-stuttgart.de
last changed 2016/05/16 09:08

_id ecaade2012_261
id ecaade2012_261
authors Feringa, Jelle; Sondergaard, Asbjorn
year 2012
title Design and Fabrication of Topologically Optimized Structures; An Integral Approach - A Close Coupling Form Generation and Fabrication
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 495-500
wos WOS:000330320600052
summary Integral structural optimization and fabrication seeks the synthesis of two original approaches; that of topological optimization (TO) and robotic hotwire cutting (HWC) (Mcgee 2011). TO allows for the reduction of up to 70% of the volume of concrete to support a given structure (Sondergaard & Dombernowsky 2011). A strength of the method is that it allows to come up with structural designs that lie beyond the grasp of traditional means of design. A design space is a discretized volume, delimiting where the optimization will take place. The number of cells used to discretize the design space thus sets the resolution of the TO. While the approach of the application of TO as a constitutive design tool centers on structural aspects in the design phase (Xie 2010), the outcome of this process are structures that cannot be realized within a conventional budget. As such the ensuing design is optimal in a narrow sense; whilst optimal structurally though, construction can be prove to be prohibitively expensive.
keywords Topology optimization; robotics; hotwire cutting; EPS formwork; concrete structures
series eCAADe
email jelleferinga@gmail.com
last changed 2014/04/14 11:07

_id caadria2010_017
id caadria2010_017
authors Hao, Hua and Ting-Li Jia
year 2010
title Floating bubbles: an agent-based system for layout planning
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 175-183
summary This program converts bubble diagram into an agent-based system for architectural design. The program suggests a model for layout planning based on bubble diagram which explicitly describes the adjacency requirements in architecture. Generally there is a basic set of rules for every agent dealing with adjacency topology and also an alternative set for other objectives. Then this basic program is developed into several generative tools for different design tasks. They imply that the agent-based system is efficient for elementary spatial arrangement and it could generate a wide range of complex solutions.
keywords Agent-based modeling; layout planning; bubble diagram
series CAADRIA
email hhua@student.ethz.ch
last changed 2012/05/30 19:29

_id ecaade2010_148
id ecaade2010_148
authors Joyce, Sam; Tabak, Vincent; Sharma, Shrikant; Williams, Chris
year 2010
title Applied Multi-Scale Design and Optimization for People Flow
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.633-639
wos WOS:000340629400068
summary This paper presents an overview of the current developments in people flow analysis in Buro Happold’s analytical group SMART Solutions. The role of people flow analysis has become an established one, within many leading consultancy firms with their own specialist groups supporting the architects and planners in the design of buildings and urban spaces. This paper proposes that the key development in the progression of this work is a due to a change in emphasis, away from a passive analysis task where its key role is to validate assumptions of flow and alleviate areas of high concern to using the process as a design instigator/driver. The new paradigm emerging, involves calculating people flow at the conceptual stage of a project in collaboration with the respective architectural firm, and using this information as a primary design input. This paper describes and analyses the two objectives set out by Buro Happold’s SMART group in order to improve the process of design; firstly to make it more prominent in the design environment and secondly to see if it has the potential to work as a design driver. These objectives create a design methodology defined by people flow and suggest value in innovating and conceiving of robust simple methods of improving designs.
keywords People flow; Pedestrian flow; Multi-objective optimization; Masterplanning; Network analysis
series eCAADe
email Sam.Joyce@BuroHappold.com
last changed 2016/05/16 09:08

_id ecaade2010_135
id ecaade2010_135
authors Knight, Michael W.; Brown, Andre G.P .
year 2010
title Increasing Design Reflection and Improving Feedback using Wikis
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.51-55
wos WOS:000340629400004
summary As architects and educators we are all aware that the methods by which we teach the subject of architecture, and particularly design studio, is different to other lecture based courses. With increasing institutional financial pressure coupled both with increasing student numbers and student expectation of quality feedback, the problems are compounded. Increasingly, we look to technology to provide the answers.
keywords Wiki; Design reflection; Pedagogy; Feedback
series eCAADe
email mknight@liv.ac.uk
last changed 2016/05/16 09:08

_id ecaade2010_210
id ecaade2010_210
authors Lassance, Guilherme; Klouche, Djamel; Izaga, Fabiana; Duarte, Gabriel
year 2010
title Contemporary Metropolitan Conditions: New challenges for design education
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.157-166
wos WOS:000340629400017
summary This paper aims to address design education issues, with a focus on the way the contemporary metropolis is conceived. We understand the reality of the contemporary metropolis as an amalgam of specific issues that transcend local and regional contexts, converging into the categories of the so-called ‘global cities’. These new urban realities derive from territories originally controlled by other logics, and are now in new stages of post-industrial development. Thus, we notice the presence of large peripheral areas where existing industrial activities initially took place, which were later transformed and migrated, leaving behind urban fragments that are taken over by informal activities. Such sites are often crossed, when not ‘on-winged’, by transport infrastructure, increasingly essential to the growing intensity of metropolitan flows. Working with this new reality clearly means first and foremost to reexamine the tools and traditional methods of design and representation of the architect and urban planner.
keywords Design process; Design education; Contemporary metropolis
series eCAADe
email glassance@gmail.com
last changed 2016/05/16 09:08

_id acadia10_299
id acadia10_299
authors Russo, Rhett
year 2010
title Information as Material: Data Processing and Digital Fabrication Technologies
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 299-304
summary This paper will examine the recent transformations to architectural drawing that are occurring in the presence :abstract of information based drawing procedures and their potential for new fabrication methods. The mathematical organization of information has resulted in a more systemic, intricate, and variable approach toward making things— characteristics that have historically been associated with manual forms of craft. The shift from a geometric to an information based paradigm is allowing a wide range of industries to more easily converge. Consequently, a much broader range of interdisciplinary fabrication processes are now available to architects and designers. This confluence of numerical based machinery in other fields is providing new possibilities for architects to visualize data using a broader range of materials and techniques.
keywords digital embroidery, information cascade, digital craft, fabrication, drawing, Processing
series ACADIA
type normal paper
email orangehorse@mindspring.com
last changed 2010/11/10 06:27

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email sherif.morad@gatech.edu
last changed 2012/02/11 18:21

_id ecaade2010_171
id ecaade2010_171
authors Achten, Henri; Kopriva, Milos
year 2010
title A Design Methodological Framework for Interactive Architecture
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.169-177
wos WOS:000340629400018
summary Interactive architecture is a fairly recent phenomenon enabled through new materials and technologies. Through experimentation architects are coping with questions of changeability, adaptability, and interaction. However, there are no comprehensive design methods to support this type of architecture. In this paper we aim to bring together methods that can support the design of interactive architecture. The methods are ordered in a methodological framework that provides an overview of possible approaches.
keywords Design methods; Interactive architecture
series eCAADe
email achten@fa.cvut.cz
last changed 2016/05/16 09:08

_id acadia10_313
id acadia10_313
authors Banda, Pablo
year 2010
title Parametric Propagation of Acoustical Absorbers
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 313-319
summary The following paper deals with a performance-driven morphogenetic design task to improve the conditions of room acoustics, using as a case study the material laboratory of the School of Architecture at Federico Santa Maria University of Technology. Combining contemporary Parametric Modeling techniques and a Performance- Based approach, an automatic generative system was produced. This system generated a modular acoustic ceiling based on Helmholtz Resonators. To satisfy sound absorption requirements, acoustic knowledge was embedded within the system. It iterates through a series of design sub-tasks from Acoustic Simulation to Digital Fabrication, searching for a suitable design solution. The internal algorithmic complexity of the design process has been explored through this case study. Although it is focused on an acoustic component, the proposed design methodology can influence other experiences in Parametric Design.
keywords Parametric Modeling, Sound Absorption & Acoustic Knowledge, Performance-Based Design, Design Task, Scripting, Digital Fabrication, Custom Tools, Honeycomb.
series ACADIA
type normal paper
email pablo.banda.p@hotmail.com
last changed 2010/12/07 13:27

_id acadia10_263
id acadia10_263
authors Beaman, Michael Leighton; Bader, Stefan
year 2010
title Responsive Shading | Intelligent Façade Systems
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 263-270
summary As issues of sustainability gain traction for architects, methodologies for designing, analyzing, and calibrating design solutions have emerged as essential areas of research and development. A number of approaches have been pursued with regard to embedding data into the design process, most fall into one of two approaches to research. The first approach is to mediate environmental impact at the level of applied technology; the second alters building methods and material construction, generating efficient energy use. However, few approaches deal with the crafting of relationships between information and performance on an architectural level. We will examine an approach focused on understanding how crafting relationships between information and design can move architecture towards achieving sustainability. In developing this approach, we created a data-driven design methodology spanning from design inception to construction. Data-driven models, common in the fields of natural science, offer a method to generate and test a multiplicity of responsive solutions. By contextualizing the solutions generated, we were able design though a set of specific and controlled responses rather than as a singular solution. Information utilization requires a new kind of craft that moves beyond instances into relationships and offers performance sensitive issues in design a focused trajectory. We applied this method to the research and development of a responsive shading structure built in conjunction with a thermal testing lab for two test locations – Austin, Texas (Figure. 1 and 2) and Munich, Germany. The following paper chronicles the design and construction at the Texas site over an academic semester.
series ACADIA
type normal paper
email mlbeaman@gmail.com
last changed 2010/11/10 06:27

_id caadria2010_031
id caadria2010_031
authors Burke, A.; B. Coorey, D. Hill and J. McDermott
year 2010
title Urban micro-informatics: a test case for high-resolution urban modelling through aggregating public information sources
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 327-336
summary Our contention is that the city is a rich collection of urban micro-ecologies in continuous formation that include information types outside the traditional boundaries of urban design, city planning, and architecture and their native data fields. This paper discusses working with non-standard urban data types of a highly granular nature, and the analytical possibilities and technical issues associated with their aggregation, through a post professional masters level research studio project run in 2008. Opportunities for novel urban analysis arising from this process are discussed in the context of typical urban planning and analysis systems and locative media practices. This research bought to light specific technical and conceptual issues arising from the combination of processes including sources of data, data collection methods, data formatting, aggregating and visualisation. The range and nature of publicly available information and its value in an urban analysis context is also explored, linking collective information sites such as Pachube, to local environmental analysis and sensor webs. These are discussed in this paper, toward determining the possibilities for novel understandings of the city from a user centric, real-time urban perspective.
keywords Urban; informatics; processing; ubicomp; visualisation
series CAADRIA
email Anthony.burke@uts.edu.au
last changed 2012/05/30 19:29

_id ascaad2010_279
id ascaad2010_279
authors Celani, G.; L. Medrano; J. Spinelli
year 2010
title Unicamp 2030
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 279-286
summary The state university of Campinas, Unicamp, is a public university in upstate São Paulo, Brazil, ranked the second best in the country. It was founded in 1966, and its main campus started to be built in 1967, in the suburbs of Campinas, nowadays a two-million people city. The area of the campus is almost 3 million square meters (300 hectares), with a total built area of 522.000 m2 and a population of 40 thousand people - 30 thousand students, 2 thousand faculty members and almost 8 thousand staff members. The campus’ gross population density is 133 people per hectare. Less than 6% of the total campus area is presently occupied. The design of Unicamp's campus is based on concepts that were typical of the modern movement, with reminiscences of corbusian urbanism, in which preference is given to cars and buildings are spread apart on the territory, with little concern to the circulation of pedestrians. The standard building type that has been built on campus since the 1970's is based on non-recyclable materials, and has a poor thermal performance. Unicamp is expected to double its number of students by the year 2030. The campus density is thus expected to grow from 600 people per hectare to almost 1,000 people per hectare. The need to construct new buildings is seen as an opportunity to correct certain characteristics of the campus that are now seen as mistakes, according to sustainability principles. This paper describes a set of proposals targeting the increase of the campus' density in a sustainable way. The plan also aims at increasing the quality of life on campus and diminishing its impact on the environment. The main targets are: - Reducing the average temperature by 2oC; - Reducing the average displacement time by 15 minutes; - Increasing the campus' density by 100%; - Reducing the CO2 emissions by 50%. // In order to achieve these goals, the following actions have been proposed: Developing a new standard building for the university, incorporating sustainability issues, such as the use of renewable and/or recyclable materials, the installation of rainwater storage tanks, the use of natural ventilation for cooling, sitting the buildings in such a way to decrease thermal gain, and other issues that are required for sustainable buildings' international certifications. To assess the performance of the new standard building, different simulation software were used, such as CFD for checking ventilation, light simulation software to assess energy consumption, and so on. 1. Filling up under-utilized urban areas in the campus with new buildings, to make better use of unused infrastructure and decrease the distance between buildings. 2. Proposing new bicycle paths in and outside campus, and proposing changes in the existing bicycle path to improve its safety. 3. Developing a landscape design plan that aims at creating shaded pedestrian and bicycle passageways.
series ASCAAD
email medrano@fec.unicamp.br
last changed 2011/03/01 06:36

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email rui.chen@sydney.edu.au
last changed 2012/02/11 18:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_562704 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002